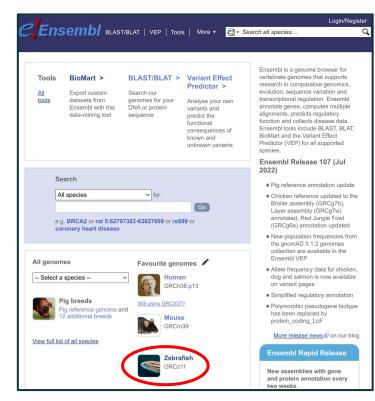
# Genome Literacy Workshop

Elisabeth Busch-Nentwich & Ian Sealy

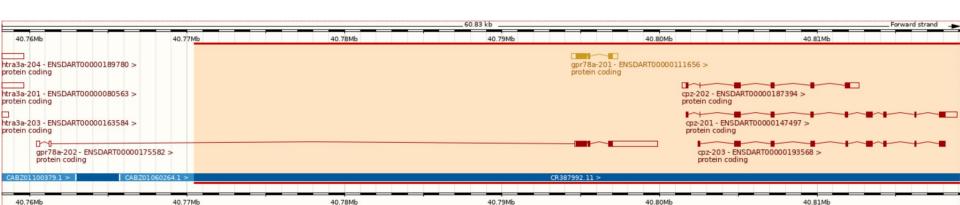


### Learning Outcomes


- Understand Ensembl as a database
  - basics of default data
  - investigating homology
- Find and switch on optional features
  - find your gene and its associated data
- Download gene and genome data
  - key tools to use
- Upload and display your own data

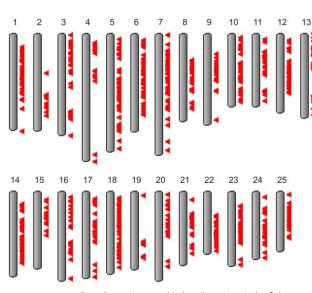
### Part 1

- Zebrafish Genome Project
- Ensembl
- Finding your gene
- Gene name and IDs
- Manual and automatic annotation
- Ensembl "Region" view


#### Ensembl

- Most examples from Ensembl (we are biased!)
- Probably most widely used genome browser amongst zebrafish researchers
- Primary source of zebrafish annotation (UCSC imports Ensembl annotation)
- Currently Ensembl version 107 (July 12th)
- New releases 3 or 4 times / year
- Zebrafish annotation largely static between releases
- But naming and homology updated (+ new functionality)




### Zebrafish Genome

- **GRCz11** (danRer11) latest assembly, released in 2017
- Sequencing strategy:
  - o 90% clone by clone sequencing
    - High quality
  - 10% whole genome shotgun sequencing
    - Lower quality
    - Fills gaps between clones
    - Identified by accessions beginning with CABZ



# Zebrafish Genome History

- Genome project started in 2001 at Sanger Institute
- Initially sequenced pool of **Tübingen** zebrafish
- But zebrafish very polymorphic compared to humans
- Too much variation to join clones, so lots of gaps
- + same region represented by 2+ clones, leading to artificial duplication
- Later used double haploid Tübingen fish for some clones and most WGS
- Only 925 gaps between scaffolds and N50 > 7 Mbp
- GRCz11 contains alternative scaffolds
- When downloading sequence from Ensembl FTP site, "toplevel" includes alternative sequence, but "primary\_assembly" doesn't and is probably what you want



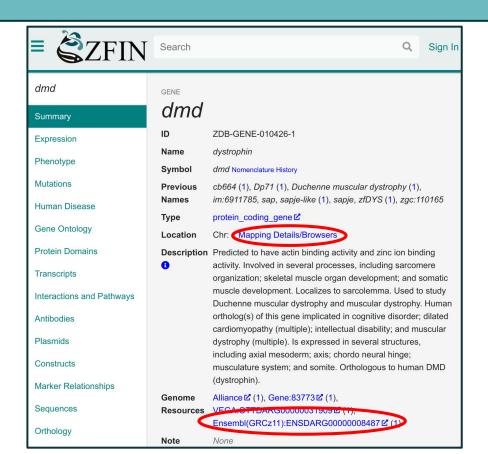
From https://www.ncbi.nlm.nih.gov/grc/zebrafish

#### Older Assemblies

Previous assemblies available in Ensembl archives:

www.ensembl.org/info/website/archives/assembly.html

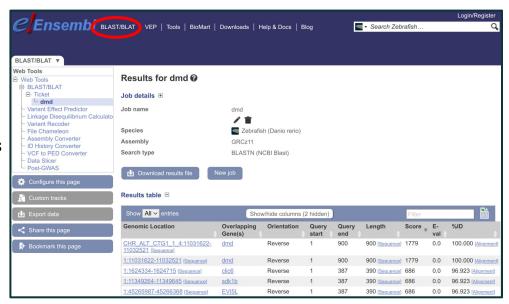
- GRCz10 / danRer10: <a href="http://e91.ensembl.org/">http://e91.ensembl.org/</a>
- Zv9 / danRer7: <a href="http://e77.ensembl.org/">http://e77.ensembl.org/</a>
- Zv8 / danRer6: <a href="http://e54.ensembl.org/">http://e54.ensembl.org/</a>
- Even older assemblies available in UCSC
- Numbering coordinated when GRC (Genome Reference Consortium) took over managing zebrafish assembly from Sanger Institute




#### **Ensembl Mirrors**

- Mirrors: <u>www.ensembl.org/info/about/mirrors.html</u>
- Main site (UK): <u>www.ensembl.org</u>
- US East mirror: <u>useast.ensembl.org</u>
- US West mirror: <u>uswest.ensembl.org</u>
- Most often slow due to chosen tracks though




Follow link from ZFIN



- Follow link from ZFIN
- Search by gene name on Ensembl (or old name or mutant name)



- Follow link from ZFIN
- Search by gene name on Ensembl (or old name or mutant name)
- Search using BLAST or BLAT on Ensembl
  - BLAT is faster
  - BLAST finds more distant alignments
     + alternative scaffolds
  - No BLAST/BLAT on Ensembl archive sites but can use BLAT on UCSC



- Follow link from ZFIN
- Search by gene name on Ensembl (or old name or mutant name)
- Search using BLAST or BLAT on Ensembl
  - BLAT is faster
  - BLAST finds more distant alignments
     + alternative scaffolds
  - No BLAST/BLAT on Ensembl archive sites but can use BLAT on UCSC
- Check gene correct by checking orthologues and/or synteny

| Species                                                              | Туре                        | Orthologue                                                                                                      | arget %id 📗 C  | uery %id 👃 | GOC Score | WGA Coverage | High Confidence | v |
|----------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|------------|-----------|--------------|-----------------|---|
| Japanese<br>medaka HdrR<br>( <i>Oryzias latipes</i> )                | 1-to-many<br>View Gene Tree | dmd (ENSORLG00000020638)  Compare Regions (2:208,119-221,155  View Sequence Alignments                          | 84.52 %        | 88.22 %    | 0         | 95.81        | Yes             |   |
| Lumpfish<br>(Cyclopterus<br>lumpus)                                  | 1-to-many<br>View Gene Tree | dmd (ENSCLMG00005009931)  Compare Regions (2:5,248,684-5,281,983:-1)  View Sequence Alignments                  | 82.21 %        | 82.49 %    | 0         | 95.20        | Yes             |   |
| Lyretail cichlid<br>(Neolamprologus<br>brichardi)                    | 1-to-1<br>View Gene Tree    | dmd (ENSNBRG00000015200) <u>Compare Regions</u> (JH422367.1:2,004 2,028,054:-1) <u>View Sequence Alignments</u> | 87.34 %        | 89.39 %    | 0         | 96.66        | Yes             |   |
| Makobe Island<br>cichlid<br>( <i>Pundamilia</i><br><i>nyererei</i> ) | 1-to-1<br>View Gene Tree    | dmd (ENSPNYG00000022641) <u>Compare Regions</u> (JH419417.1:620,2 712,305:-1) <u>View Sequence Alignments</u>   | 45.32 %<br>05- | 89.56 %    | 0         | 96.75        | Yes             |   |

#### Gene Names

- Names assigned to Ensembl genes automatically based on sequence similarity
  - Mistakes are possible
  - Names can change
- ZFIN gene symbols (i.e. the name assigned by ZFIN) are preferred (>23,000 genes), but other databases are also used, e.g. HGNC for ~150 genes, miRBase for ~300 genes
- Description indicates source of name
- Genes without a match are given a name based on the sequence used to identify them, e.g AL645792.1 (clone) or CABZ01052570.1 (WGS)

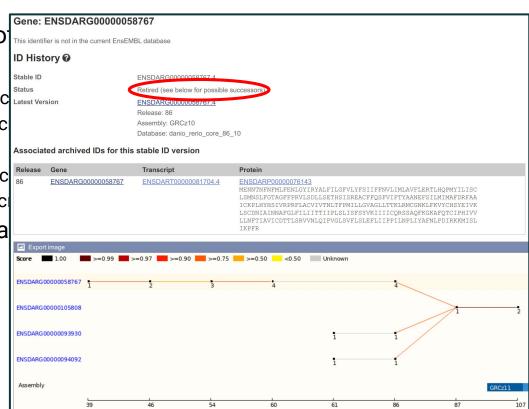
Gene: dmd ENSDARG00000008487

Description

dystrophic [Source:ZFIN:2cc:ZDB-GENE-010426-1 ]

Gene Synonyms

Dp71, Duchenne muscular dystrophy, cb664, im:6911785, sap, sapje, sapje-like, zfDYS, zgc:110165


- Best to use stable IDs
- e.g. **ENS**DARG00000028213 (ttn.2 or ttna)
- **ENS** = Ensembl

- Best to use stable IDs
- e.g. ENS**DAR**G00000028213 (ttn.2 or ttna)
- ENS = Ensembl
- **DAR** = Danio rerio

- Best to use stable IDs
- e.g. ENSDAR**G**00000028213 (ttn.2 or ttna)
- ENS = Ensembl
- DAR = Danio rerio
- G = Gene (also T for Transcript, P for Peptide and E for exon)

- Not completely stable, if annotation or underlying assembly changes
- Stable IDs have **versions**, e.g. ENSDARG00000058767.4
  - Version number of ENSDARG increases if transcripts change
  - Version number of ENSDART increases if splicing, chromosome or sequence of transcript change
  - Version number of ENSDARP increases if peptide's sequence changes
  - Version number of **ENSDARE** increases if exon's sequence changes
- Can also be removed, e.g. searching for ENSDARG00000058767

- Not completely stable, if annor
- Stable IDs have **versions**, e.g.
  - Version number of **ENSDARG** inc
  - Version number of ENSDART inc change
  - Version number of ENSDARP inc
  - Version number of ENSDARE incl
- Can also be removed, e.g. sea



- Not completely stable, if annotation or underlying assembly changes
- Stable IDs have **versions**, e.g. ENSDARG00000058767.4
  - Version number of ENSDARG increases if transcripts change
  - Version number of ENSDART increases if splicing, chromosome or sequence of transcript change
  - Version number of ENSDARP increases if peptide's sequence changes
  - Version number of **ENSDARE** increases if exon's sequence changes
- Can also be removed, e.g. searching for ENSDARG00000058767
- Can use <u>www.ensembl.org/Danio\_rerio/Tools/IDMapper</u> to convert older IDs to what they **map** to currently in Ensembl

#### Gene Annotation

- Zebrafish (+ human, mouse, rat) has manual and automatic gene annotation
- Other 300+ genomes in Ensembl only have automatic annotation
- www.ensembl.org/info/about/species.html



#### Manual Annotation

- Gold standard
- Uses information from databases and publications
- More accurate for tricky areas:
  - o e.g. UTRs, splice sites, single exon transcripts
- Slower and more expensive
- Thorough, but leads to inclusion of transcripts that may not be representative (e.g. low expression)
- Only clones manually annotated

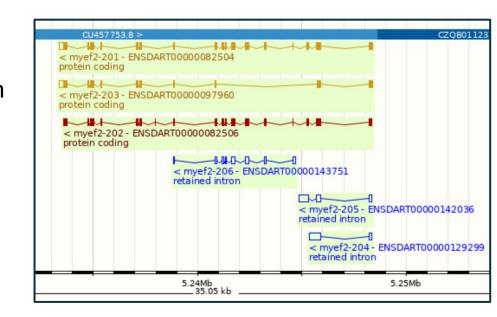


#### **Automatic Annotation**

#### Faster

 Uses evidence from sequences deposited in ENA/GenBank/DDBJ and UniProt proteins

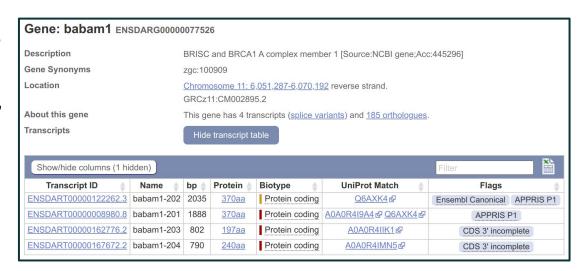
#### Overview:


- Identify repeats and low complexity sequence with RepeatMasker,
   Dust and TRF
- Run GENSCAN to identify ab initio gene predictions
- Align UniProt proteins to GENSCAN predictions, prioritising zebrafish proteins or those from closely related or well annotated species
- Make gene models using Genewise
- Align cDNAs, ESTs and RNA-seq to annotate UTRs and make RNA-seq gene models
- Collapse redundant transcripts and cluster into genes, prioritising manual annotation but including automatic annotation if different splicing
- Identify pseudogenes by looking for genes with frameshifts / repeats
- o Identify processed pseudogenes by looking for multi-exon equivalent



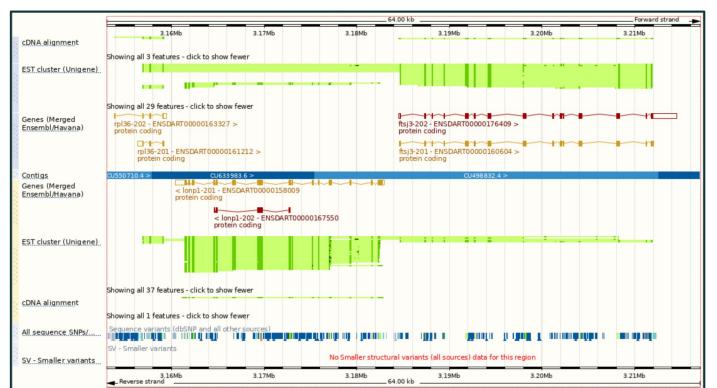
From Ensembl training materials, CC BY 4.0 license

### Merged Annotation


- Golden: Identical manual and automatic annotation
- Red: Protein-coding transcript from automatic annotation
- Blue: Non-coding transcript
- Filled box: Coding exon
- Non-filled box: Non-coding exon



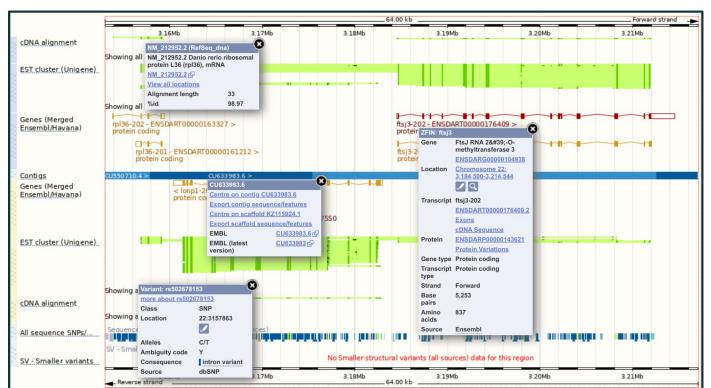
 In reality, would not trust these retained intron transcripts unless shown to have comparable expression levels


### Which Transcript?

- Often multiple transcripts
- Best transcript for experiments?
- Golden transcript is a good bet
- Ensembl Canonical transcript is, on balance, most conserved, most expressed, longest CDS (coding sequence) and in other databases
- APPRIS combines protein structure, important residues and homology to identify a principal isoform - APPRIS P1



### "Region in detail" Demo


Go to "22:3153000-3217000"



- 4 clones
- 2 genes on +
- 1 gene on -
- Manual + automatic annotation
- cDNA + EST tracks
- Variant tracks

### "Region in detail" Demo

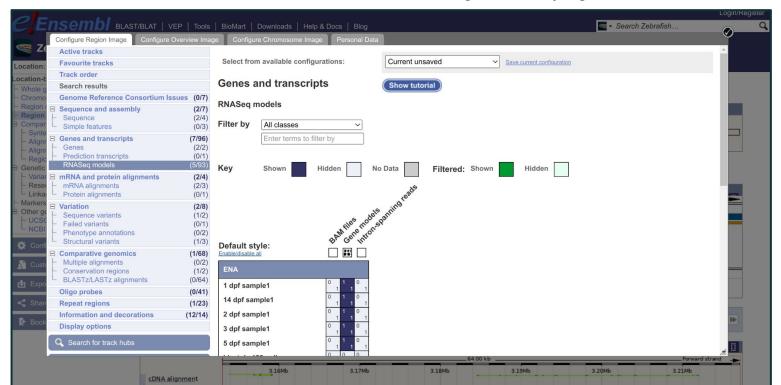
• Go to "22:3153000-3217000"



- 4 clones
- 2 genes on +
- 1 gene on -
- Manual + automatic annotation
- cDNA + EST tracks
- Variant tracks

### Exercise 1

- Do Exercise 1 "exploring the genome"
- Covers:
  - Region view
  - BLAST/BLAT
  - Archive sites
- Go to <u>mbl2022.buschlab.orq</u>

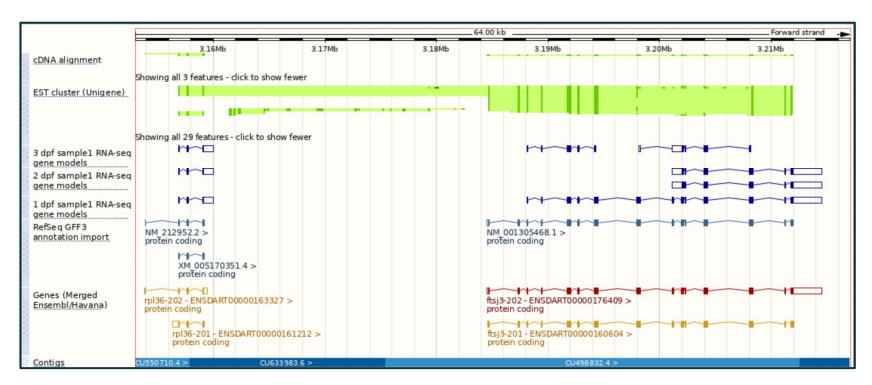

### Part 2

- Configuring Ensembl tracks
- Ensembl "Gene" view
- Comparative genomics

But first, back to the region we were looking at before the exercises:
 "22:3153000-3217000"

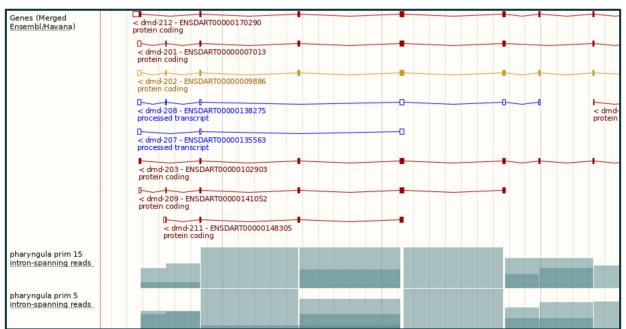
# "Configure this page" Demo

Go to "22:3153000-3217000" and click "Configure this page"




### RefSeq Aside

- NCBI's annotated and curated database of reference sequences, including transcripts and proteins
- Accessions starting X are "Model RefSeq" predictions from automatic genome annotation
- Accessions starting N are "Known RefSeq" from manually curated cDNA and EST data
- Accessions starting NM & XM indicate mRNA; NP & XP are proteins


### "Configure this page" Demo

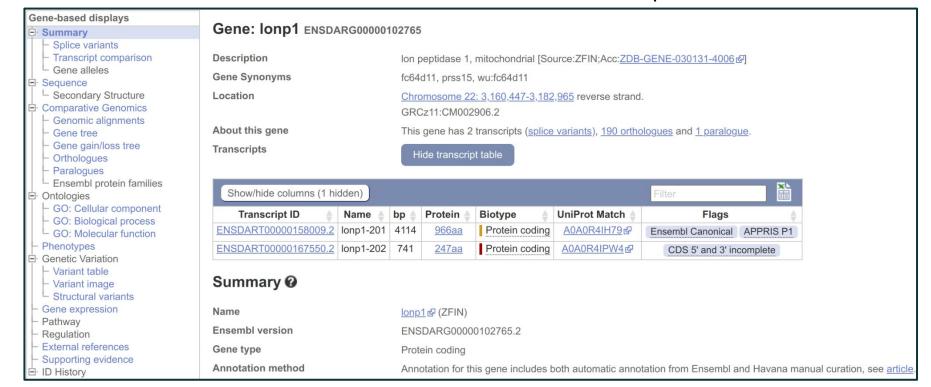
Go to "22:3153000-3217000" and click "Configure this page"



### "Configure this page" Demo

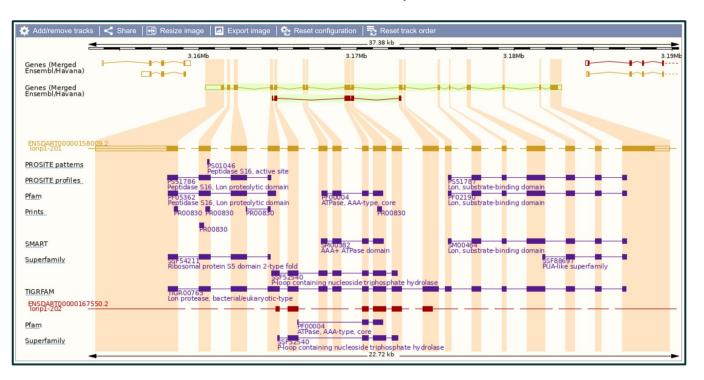
- Go to "1:10822281-10882903" and click "Configure this page"
- Under "RNASeq models", turn on "Intron-spanning reads" for "pharyngula prim 5" and "pharyngula prim 15"




### "Gene" Demo - Summary

#### Go to ENSDARG00000102765




### "Gene" Demo - Transcript Table

Go to ENSDARG00000102765 and click on "Show transcript table"



### "Gene" Demo - Splice Variants

Go to ENSDARG00000102765 and click on "Splice variants"



# "Gene" Demo - Orthologues

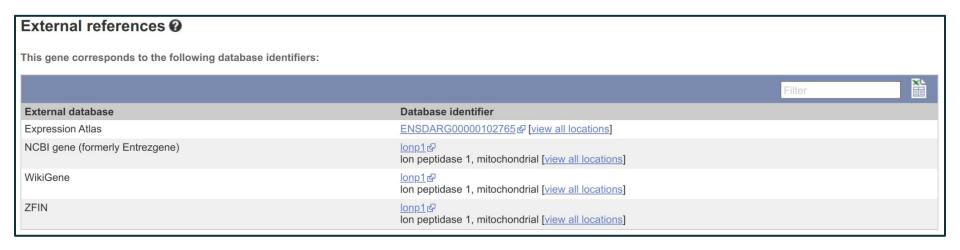
• Go to ENSDARG00000102765 and click on "Orthologues"

| Show All ventries                                             |                          | Show/hide columns                                                                                                         |               |              |              | Filter          |                    |
|---------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|--------------|--------------|-----------------|--------------------|
| Species                                                       | Туре                     | Orthologue                                                                                                                | Target<br>%id | Query<br>%id | GOC<br>Score | WGA<br>Coverage | High<br>Confidence |
| Abingdon island giant tortoise (Chelonoidis abingdonii)       | 1-to-1<br>View Gene Tree | LONP1 (ENSCABG00000010924) <u>Compare Regions</u> (PKMU01001122.1:170,198-221,187:1) <u>View Sequence Alignments</u>      | 75.03 %       | 75.26 %      | 25           | n/a             | No                 |
| African ostrich<br>(Struthio camelus<br>australis)            | 1-to-1<br>View Gene Tree | LONP1 (ENSSCUG00000004632) <u>Compare Regions</u> (KL206174.1:174,870-201,335:1) <u>View Sequence Alignments</u>          | 80.69 %       | 70.50 %      | 50           | n/a             | Yes                |
| Algerian mouse<br>(Mus spretus)                               | 1-to-1<br>View Gene Tree | Lonp1 (MGP_SPRETEIJ_G0022694) <u>Compare Regions</u> (17:54,555,161-54,567,779:-1) <u>View Sequence Alignments</u>        | 75.05 %       | 74.12 %      | 0            | n/a             | No                 |
| Alpine marmot<br>( <i>Marmota marmota</i><br><i>marmota</i> ) | 1-to-1<br>View Gene Tree | LONP1 (ENSMMMG00000018859) <u>Compare Regions</u> (CZRN01000089.1:3,499,006-3,520,539:-1) <u>View Sequence Alignments</u> | 62.80 %       | 62.22 %      | 0            | n/a             | No                 |
| Amazon molly<br>( <i>Poecilia formosa</i> )                   | 1-to-1<br>View Gene Tree | lonp1 (ENSPFOG00000001826)  Compare Regions (KI520250.1:178,559-209,184:-1)  View Sequence Alignments                     | 75.94 %       | 77.43 %      | 0            | 85.71           | Yes                |

# "Gene" Demo - Paralogues

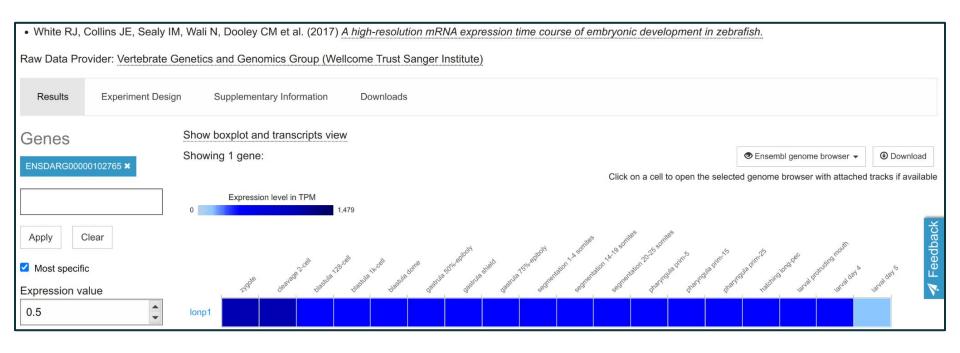
Go to ENSDARG00000102765 and click on "Paralogues"




## "Gene" Demo - GO Terms

Go to ENSDARG00000102765 and click on "GO: Molecular function"

| GO: Molecula                 | r function 🛭                     |          |                   |                                          |                                                                          |  |  |  |  |  |
|------------------------------|----------------------------------|----------|-------------------|------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Show/hide columns (1 hidden) |                                  |          |                   |                                          |                                                                          |  |  |  |  |  |
| Accession                    | ♦ Term                           | Evidence | Annotation source | Transcript IDs                           | <b>\$</b>                                                                |  |  |  |  |  |
| GO:0000166 &                 | nucleotide binding               | IEA      | UniProt           | ENSDART00000158009                       | <ul><li><u>Search BioMart</u></li><li><u>View on karyotype</u></li></ul> |  |  |  |  |  |
| GO:0003677 &                 | DNA binding                      | IEA      | UniProt           | ENSDART00000158009                       | <ul><li>Search BioMart</li><li>View on karyotype</li></ul>               |  |  |  |  |  |
| GO:0003697 &                 | single-stranded DNA binding      | IBA      | GO_Central        | ENSDART00000158009                       | <ul><li>Search BioMart</li><li>View on karyotype</li></ul>               |  |  |  |  |  |
| GO:0004176 &                 | ATP-dependent peptidase activity | IBA      | GO_Central        | ENSDART00000167550<br>ENSDART00000158009 | <ul><li><u>Search BioMart</u></li><li><u>View on karyotype</u></li></ul> |  |  |  |  |  |
| GO:0005524 &                 | ATP binding                      | IEA      | UniProt           | ENSDART00000158009<br>ENSDART00000167550 | <ul><li>Search BioMart</li><li>View on karyotype</li></ul>               |  |  |  |  |  |
| GO:0016887 <sub></sub> &     | ATP hydrolysis activity          | IEA      | UniProt           | ENSDART00000158009<br>ENSDART00000167550 | <ul><li>Search BioMart</li><li>View on karyotype</li></ul>               |  |  |  |  |  |
| GO:0043565 &                 | sequence-specific DNA binding    | IEA      | UniProt           | ENSDART00000158009                       | <ul><li><u>Search BioMart</u></li><li><u>View on karyotype</u></li></ul> |  |  |  |  |  |

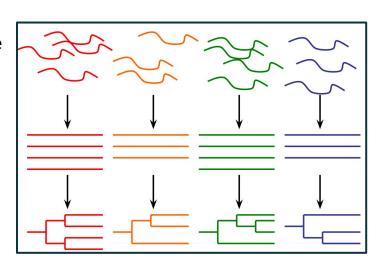

#### "Gene" Demo - External References

Go to ENSDARG00000102765 and click on "External references"

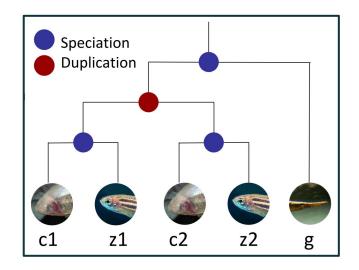


## "Gene" Demo - Expression Atlas

From "External references" click "Expression Atlas" ID then "18 White et al"




## Compara


- Compara produce Ensembl's comparative genomics resources
- Two types of analysis:
  - Gene level comparisons to produce gene trees, e.g. infer homologues (orthologues & paralogues)
  - Whole genome alignments pairwise and multiple alignments, e.g. constrained elements and synteny

## Compara - Gene Trees

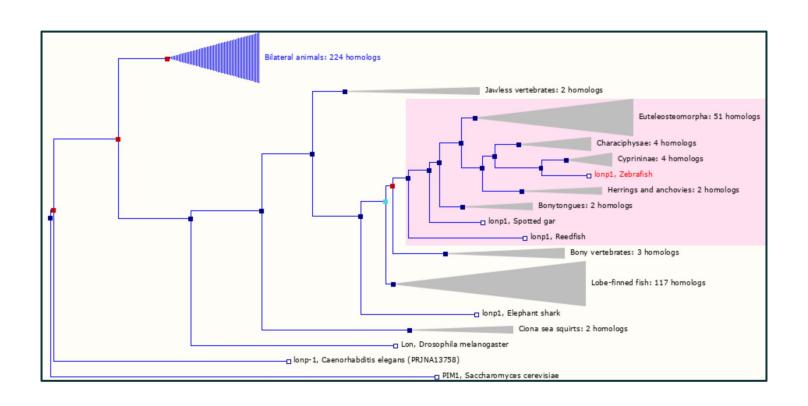
- Separate trees for proteins and ncRNAs (take secondary structure into account)
- Process:
  - Take **representative** transcripts (e.g. longest CDS) from all genes from all species
  - Classify genes into clusters by TreeFam family
  - Build **multiple** alignment
  - Build gene tree reconciled with NCBI's taxonomy tree
  - Infer orthologues and paralogues



# Compara - Infer Homologues (Orthologues & Paralogues)



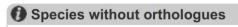
**z1 & z2** are **paralogues** (arose from **duplication**), as are **c1 & c2** 


z1 & c1 are orthologues (arose from speciation), as are z2 & c2 + z2 & g, etc...

z1 & c1 have a one-to-one relationship

g has a one-to-many relationship to e.g. z1 and z2

Homologues labelled "high confidence" are supported by conservation of synteny or whole genome alignment blocks


# Compara - lonp1 Gene Tree



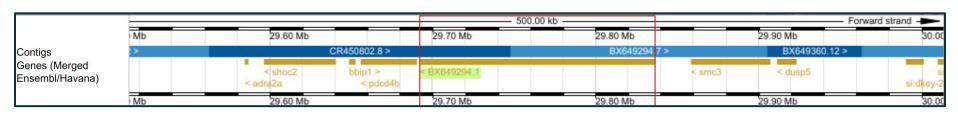
# Compara - Whole Genome Alignments

- Pairwise whole genome alignments with LASTZ
- Zebrafish has alignments to 64 species (plus itself)
- Only human (181) and medaka (65) have more
- Full list at: <u>www.ensembl.org/info/genome/compara/analyses.html</u>
- Multiple genome alignments with EPO (Enredo, Pecan, Ortheus)
- Zebrafish is in 2 alignments (out of 11 in Ensembl) one of 39 fish and one of
   65 fish
- For lists of species, see:
   www.ensembl.org/info/genome/compara/multiple\_genome\_alignments.html

No zebrafish orthologue listed for human RBM20 gene (ENSG00000203867)

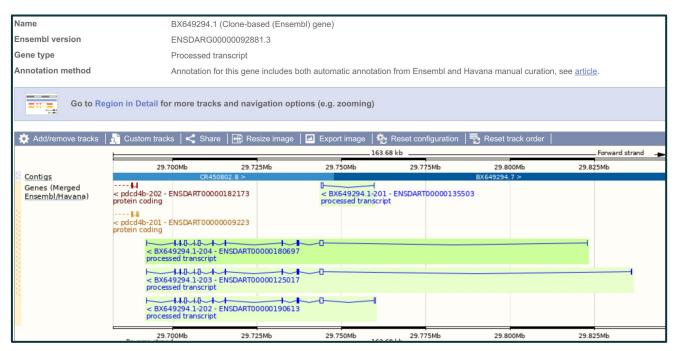


22 species are not shown in the table above because they don't have any orthologue with ENSG00000203867.


- Ancestral sequence
- Siamese fighting fish (Betta splendens)
- Sloth (Choloepus hoffmanni)
- Channel bull blenny (Cottoperca gobio)
- Lumpfish (Cyclopterus lumpus)
- Tongue sole (Cynoglossus semilaevis)
- Common carp (Cyprinus carpio carpio)

Zebrafish (Danio rerio)

• If we look at the region around RBM20 in human and then click on **Synteny** we see conservation of synteny with zebrafish chr22


| Homo sapiens genes             | Location               |               | Danio rerio homologues            | Location             |                      |
|--------------------------------|------------------------|---------------|-----------------------------------|----------------------|----------------------|
| <u>DUSP5</u> (ENSG00000138166) | 10:110497907-110511533 | $\rightarrow$ | <u>dusp5</u> (ENSDARG00000019307) | 22:29911326-29922872 | Region<br>Comparison |
| <u>SMC3</u> (ENSG00000108055)  | 10:110567684-110606048 | $\rightarrow$ | smc3 (ENSDARG00000019000)         | 22:29858535-29906764 | Region<br>Comparison |
| RBM20 (ENSG00000203867)        | 10:110644336-110839468 |               | No homologues                     |                      |                      |
| PDCD4 (ENSG00000150593)        | 10:110871795-110900006 | $\rightarrow$ | pdcd4b (ENSDARG00000041022)       | 22:29655981-29689981 | Region<br>Comparison |
| BBIP1 (ENSG00000214413)        | 10:110898730-110919201 | $\rightarrow$ | <u>bbip1</u> (ENSDARG00000071046) | 22:29648854-29652356 | Region<br>Comparison |
| SHOC2 (ENSG00000108061)        | 10:110919367-111017307 | $\rightarrow$ | shoc2 (ENSDARG00000040853)        | 22:29596646-29640181 | Region<br>Comparison |
| ADRA2A (ENSG00000150594)       | 10:111077029-111080907 | $\rightarrow$ | adra2a (ENSDARG00000040841)       | 22:29584800-29586608 | Region<br>Comparison |

• If we look at the chr22 region in zebrafish then all the surrounding genes are the same and RBM20 is likely to be BX649294.1



| Homo sapiens genes             | Location               |               | Danio rerio homologues            | Location             |                      |
|--------------------------------|------------------------|---------------|-----------------------------------|----------------------|----------------------|
| <u>DUSP5</u> (ENSG00000138166) | 10:110497907-110511533 | $\rightarrow$ | <u>dusp5</u> (ENSDARG00000019307) | 22:29911326-29922872 | Region<br>Comparison |
| <u>SMC3</u> (ENSG00000108055)  | 10:110567684-110606048 | $\rightarrow$ | smc3 (ENSDARG00000019000)         | 22:29858535-29906764 | Region<br>Comparison |
| RBM20 (ENSG00000203867)        | 10:110644336-110839468 |               | No homologues                     |                      |                      |
| PDCD4 (ENSG00000150593)        | 10:110871795-110900006 | $\rightarrow$ | pdcd4b (ENSDARG00000041022)       | 22:29655981-29689981 | Region<br>Comparison |
| <u>BBIP1</u> (ENSG00000214413) | 10:110898730-110919201 | $\rightarrow$ | <u>bbip1</u> (ENSDARG00000071046) | 22:29648854-29652356 | Region<br>Comparison |
| <u>SHOC2</u> (ENSG00000108061) | 10:110919367-111017307 | $\rightarrow$ | shoc2 (ENSDARG00000040853)        | 22:29596646-29640181 | Region<br>Comparison |
| ADRA2A (ENSG00000150594)       | 10:111077029-111080907 | $\rightarrow$ | adra2a (ENSDARG00000040841)       | 22:29584800-29586608 | Region<br>Comparison |

 Erroneously labelled as processed transcript and so not in protein gene tree, so not labelled as orthologue or named by orthology

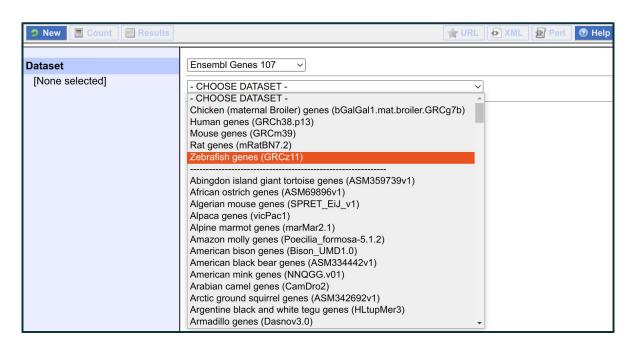


## Exercise 2

- Do Exercise 2 "exploring genes"
- Covers:
  - Gene view
  - Phenotypes
  - Gene Ontology
  - Homologues
  - Gene trees
  - Synteny
- Go to <u>mbl2022.buschlab.org</u>

# Part 3

- BioMart
- Other tools
- Custom tracks


#### BioMart

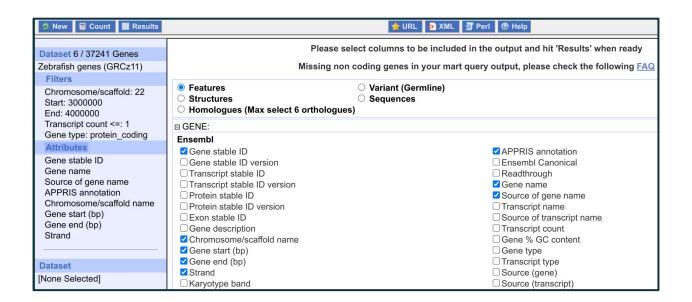
- Export (large amounts of) Ensembl data without programming
- Completely **customisable**, but **simple** to make complex queries
- Four stages:
  - Dataset
  - Filters
  - Attributes
  - Results



#### BioMart - Dataset

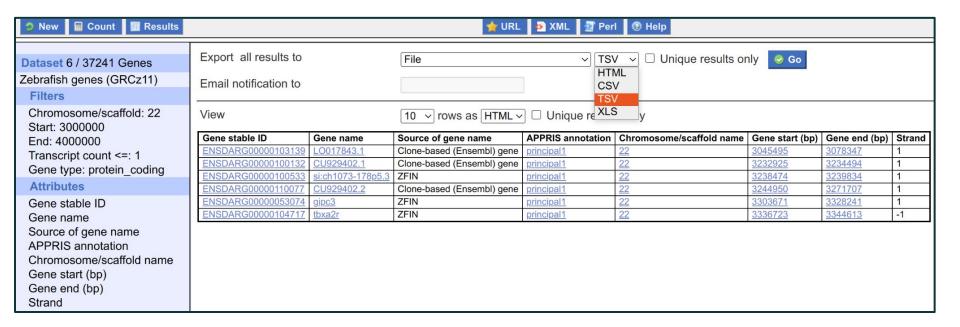
Choose database (e.g. genes or variants) and species



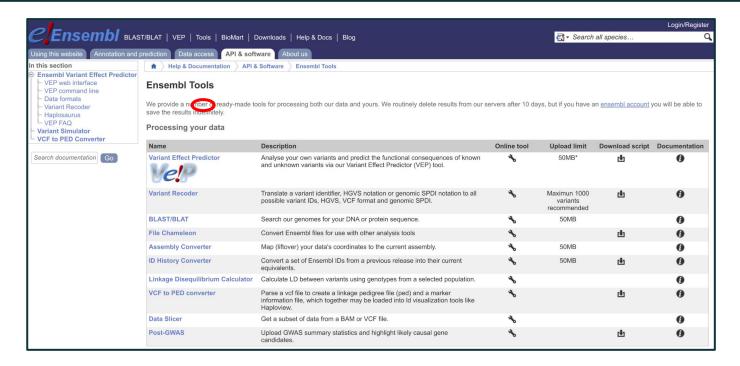

#### BioMart - Filters

- **Filter** to reduce the dataset
- Can select **multiple** filters
- e.g. regions, IDs, GO terms, etc...




#### **BioMart - Attributes**

- What data to export
- e.g. IDs, genomic locations, sequences, homologues, etc...




#### BioMart - Results

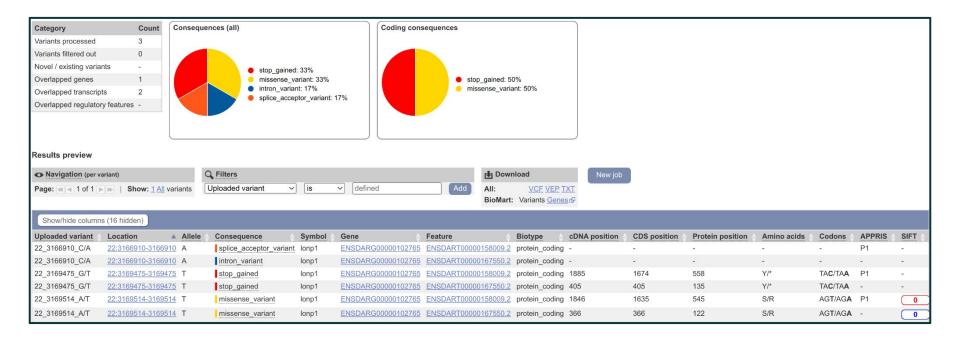
- Access your selected data in multiple formats
- e.g. HTML, TSV, CSV, XLS



#### **More Tools**



Results from all tools can be stored indefinitely if create an Ensembl account


## Variant Effect Predictor

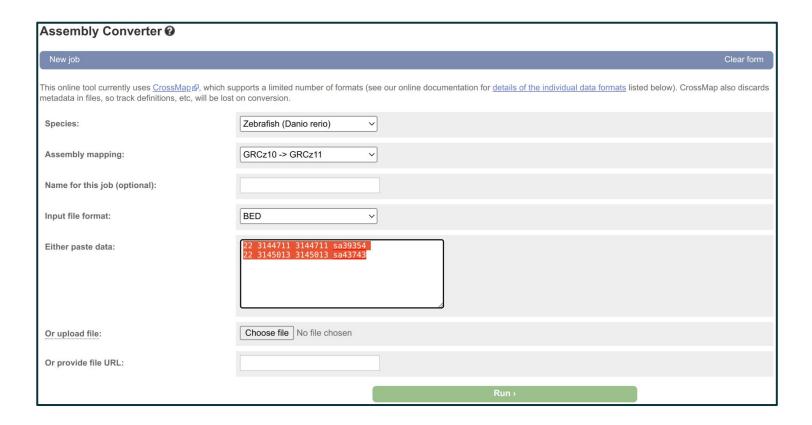
- VEP predicts consequences of variants
- www.ensembl.org/Danio\_rerio/Tools/VEP
- Example:

```
22 3169475 3169475 G/T 1
22 3169514 3169514 A/T 1
22 3166910 3166910 C/A 1
(Chr, Start, End, REF/ALT, Strand)
```

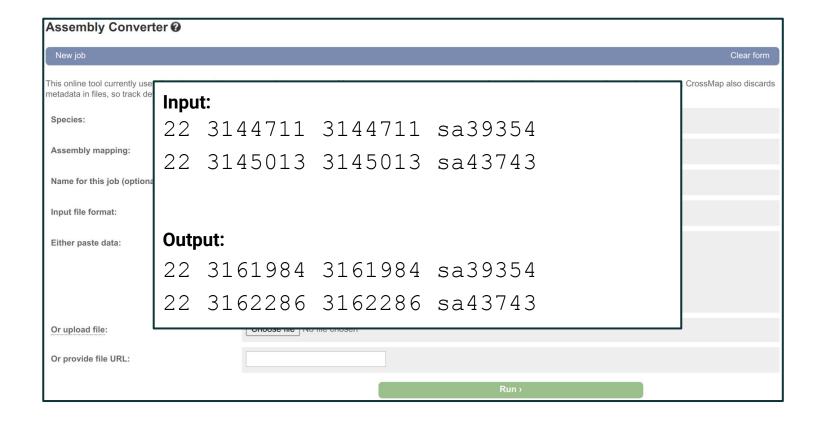
Custom Ensembl format, but standard formats like VCF can be used

## Variant Effect Predictor




# Assembly Converter

- Assembly Converter allows converting coordinates from one assembly to another
- Also known as LiftOver
- e.g. used for converting coordinates found in old papers
- www.ensembl.org/Danio\_rerio/Tools/AssemblyConverter
- Example:

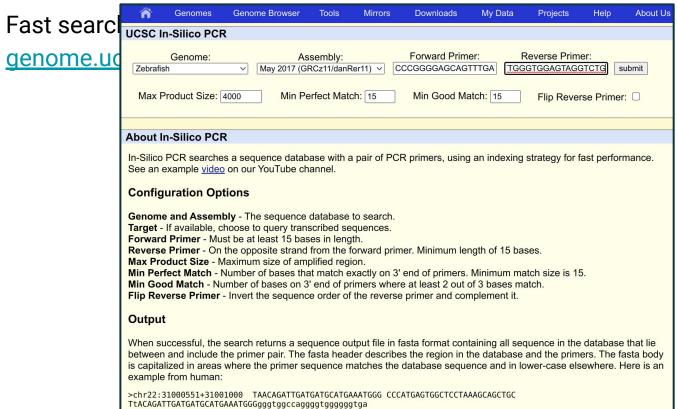

```
22 3144711 3144711 sa39354
22 3145013 3145013 sa43743
(Chr, Start, End, Name)
```

- BED format: <a href="https://www.ensembl.org/info/website/upload/bed.html">www.ensembl.org/info/website/upload/bed.html</a>
- (Only first three fields are essential)

# **Assembly Converter**



# **Assembly Converter**




## **UCSC In-Silico PCR**

- Fast search for possible products from a pair of PCR primers
- genome.ucsc.edu/cgi-bin/hgPcr

## UCSC In-Silico PCR

genome.ud



#### UCSC In-Silico PCR

Fast search for p

genome.ucsc.edu

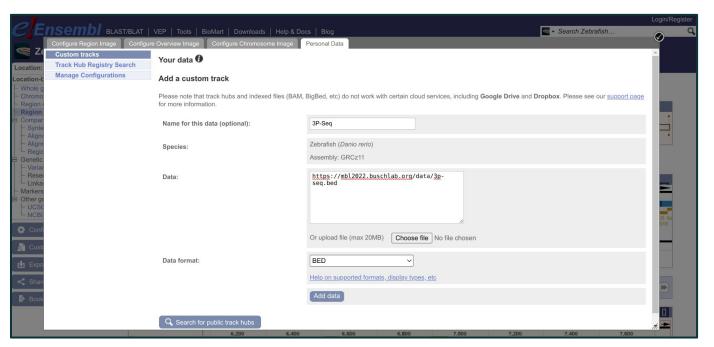


## **UCSC & Ensembl Differences**

• Ensembl: 1

UCSC: chr1

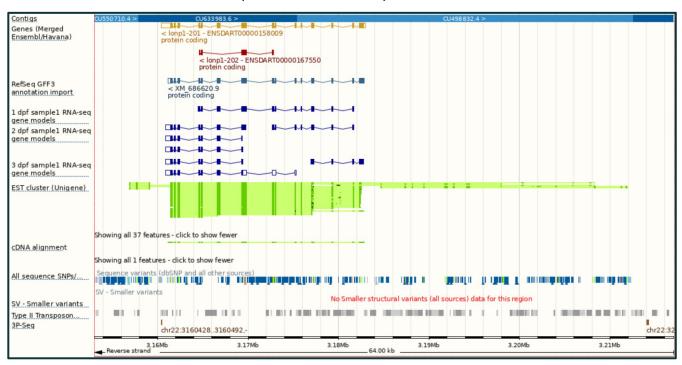
• **Ensembl:** 1-based coordinates (bases numbered)


**UCSC:** 0-based coordinates (numbers between bases)

| chr1    |   | Т |   | Α |    | C |   | G      |   | Т |   | C |   | Α |   |
|---------|---|---|---|---|----|---|---|--------|---|---|---|---|---|---|---|
|         |   | 1 | Î | 1 | 1  | 1 | 1 | 1      | 1 | 1 |   | 1 | 1 | 1 | Ī |
| 1-based |   | 1 |   | 2 | 20 | 3 |   | ا<br>4 |   | 5 |   | 6 |   | 7 |   |
| 0-based | 0 |   | 1 |   | 2  |   | 3 |        | 4 |   | 5 |   | 6 |   | 7 |

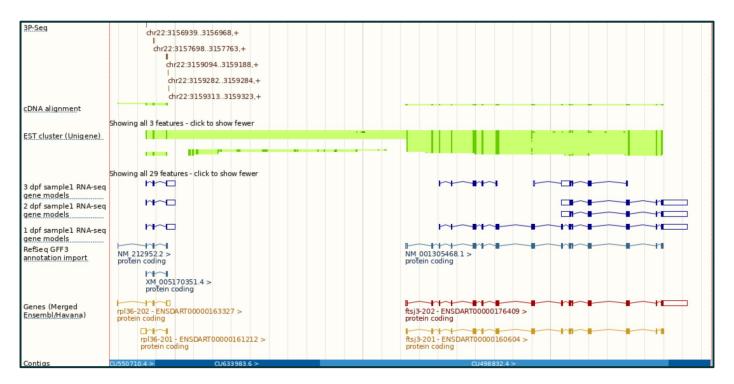
The G is 1:4-4 in Ensembl coordinates but 1:3-4 in UCSC

#### **Custom Tracks**


Click "Custom tracks" and add <a href="https://mbl2022.buschlab.org/data/3p-seq.bed">https://mbl2022.buschlab.org/data/3p-seq.bed</a>



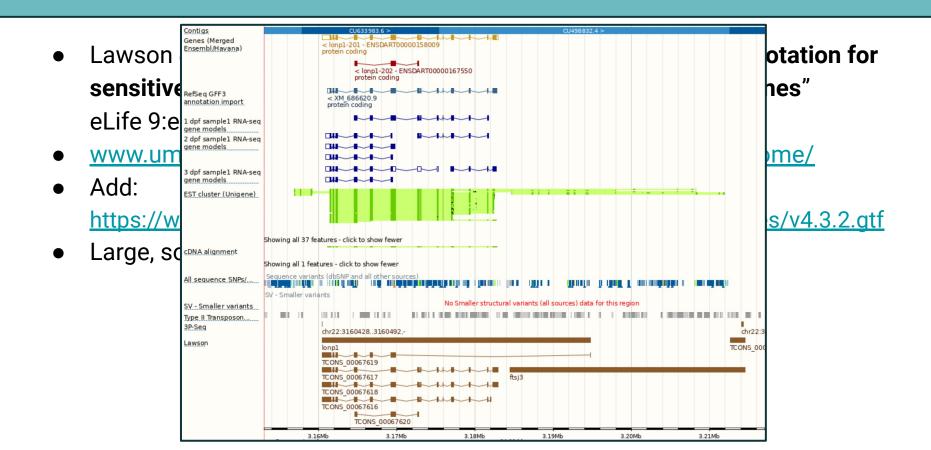
24 hpf 3P-Seq data from Bartel lab


#### **Custom Tracks**

• Go to "22:3153000-3217000" (reverse strand)



#### **Custom Tracks**


• Go to "22:3153000-3217000" (forward strand)



#### Custom Tracks - Lawson Lab Annotation

- Lawson et al. (2020) "An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes" eLife 9:e55792
- www.umassmed.edu/lawson-lab/reagents/zebrafish-transcriptome/
- Add:
   <a href="https://www.umassmed.edu/globalassets/lawson-lab/downloadfiles/v4.3.2.gtf">https://www.umassmed.edu/globalassets/lawson-lab/downloadfiles/v4.3.2.gtf</a>
- Large, so Ensembl will be slow disable or delete when done

## Custom Tracks - Lawson Lab Annotation



## Exercise 3

- Do Exercise 3 "exploring data"
- Covers:
  - BioMart
  - Making BED files
  - Finding candidate genes
  - Finding orthologues
- Go to mbl2022.buschlab.org

# Thank You!

Any questions?

